

ORB-HT-41001-MAR/41002/41003/41004/41005/41006 41013/41014/41015/41016/41017/41018

Orbis Marine Heat Detector

Note: CRS Approval is applicable to Part Nos. ORB-HT-41014-MAR and ORB-HT-41016-MAR only

PRODUCT OVERVIEW

Product	Orbis Marine	Orbis Marine Heat	
	Heat Detector	Detector with flashing	
		LED	
	Part No.	Part No.	
Class A1R	ORB-HT-41001-MAR	ORB-HT-41013-MAR	
Class A2S	ORB-HT-41002-MAR	ORB-HT-41014-MAR	
Class BR	ORB-HT-41003-MAR	ORB-HT-41015-MAR	
Class BS	ORB-HT-41004-MAR	ORB-HT-41016-MAR	
Class CR	ORB-HT-41005-MAR	ORB-HT-41017-MAR	
Class CS	ORB-HT-41006-MAR	ORB-HT-41018-MAR	

PRODUCT INFORMATION

The Orbis Marine Heat Detector range incorporates six heat detector classes to suit a wide variety of operating conditions in which smoke detectors are unsuitable.

The European Standard EN 54-5 classifies heat detectors to the highest ambient temperature in which they can safely be used without risk of false alarm. The classes are identified by the letters A to G (Class 1 is sub-divided into A1 and A2). In addition to the basic classification, detectors may be identified by a suffix to show that they are rate-of-rise (suffix R) or fixed (static) temperature

All heat detectors in the Orbis Marine range are tested as static or rate-of-rise detectors and are classified as A1R, A2S, BR, BS, CR and CS.

TECHNICAL DATA

All data is supplied subject to change without notice. Specifications are typical at 24 V, 23°C and 50% RH unless otherwise stated.

Detection principle Measurement of heat by means of a thermistor

Sampling frequency Once every four seconds Supply voltage 8.5 V dc to 33 V dc

Supply Wiring Two wire supply, polarity sensitive

95 µA

Maximum polarity reversal 200 ms Power up time < 20 seconds

Minimum 'detector active' 6 V

voltage

Power-up surge current at

24 V

95 µA Average quiescent current

at 24 V

Alarm current 12 V 20 mA 24V 40 mA Alarm load 600 O

5 V - 33 V Holding voltage Minimum holding current 8 mA Minimum voltage to light

alarm LED

Alarm reset voltage < 1 V

One second Alarm reset time

Alarm indicator Integral indicator with 360°

visibility

Remote output LED (-) $1.2 \text{ k}\Omega$ connected to negative

characteristic supply -40°C to +70°C Operating and storage temperature

Humidity (no condensation 0% to 98% RH

or icing)

Effect of atmospheric None pressure on optical sensor Effect of wind speed None

Designed to IP Rating IP23D

EN54-5, EN54-7, MED, LR, DNV-GL, Standards & approvals

BV, ABS, CCS, KRS and CRS

Dimensions 97 mm diameter x 36 mm height 100 mm diameter x 51 mm height

in base

Weight 70 g detector 130 g detector with base

Materials Housing: White flame-retardant

polycarbonate

Terminals: Nickel plated stainless steel

OPERATION

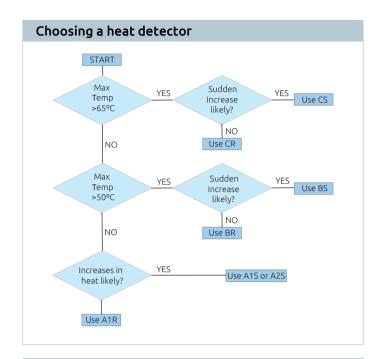
Orbis Marine heat Detectors have an open-web casing which enables air to flow freely across a thermistor which measures the air temperature every two seconds. A microprocessor stores the temperatures and compares them with pre-set values to determine whether a fixed upper limit - the alarm level - has been reached.

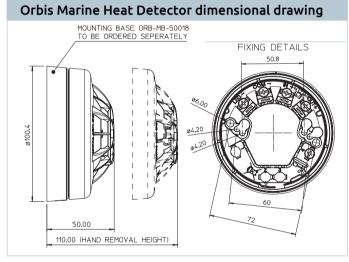
In the case of rate-of-rise detectors the microprocessor uses algorithms to determine how fast the temperature is increasing. Static heat detectors respond only when a fixed temperature has been reached. Rate-of-rise detectors also have a fixed upper limit but they also measure the rate of increase in temperature. A fire might thus be detected at an earlier stage than with a static detector so that a rate-of-rise detector is to be preferred to a static heat detector unless sharp increases of heat are part of the normal environment in the area protected by the heat detector.

Orbis Marine Heat Detectors response modes						
Detector class	Application temperature		Static response temperature °C			
	Тур	Max	Min	Тур	Max	
A1R	25	50	54	57	65	
A2S	25	50	54	61	70	
BR	40	65	69	73	85	
BS	40	65	69	73	85	
CR	55	80	84	90	100	
CS	55	80	84	90	100	

WHERE TO USE HEAT DETECTORS

Heat detectors are used in applications where smoke detectors are unsuitable. Smoke detectors are used whenever possible since smoke detection provides earlier warning of fire than heat detection.


Heat detectors should be used if there is a danger of nuisance alarms from smoke detectors.


CHOOSING THE CORRECT CLASS OF HEAT DETECTOR

Heat detectors have a wide range of response characteristics and the choice of the right type for a particular application may not always seem straightforward. It is helpful to understand the way that heat detectors are classified as explained earlier and to memorise a simple rule: use the most sensitive heat detector available consistent with avoiding false alarms.

In the case of heat detectors it may be necessary to take an heuristic approach, i.e., trial and error, until the best solution for a particular site has been found. The flowchart will help in choosing the right class of heat detector.

If the fire detection system is being designed to comply with BS 5839-1 heat detectors should be installed at heights of less than 12 metres with the exception of Class A1 detectors, which can be installed at heights of up to 13.5 metres.

EMC DIRECTIVE 2014/30/EU

The Orbis Marine Heat Detector complies with the essential requirements of the EMC Directive 2014/30/EU, provided that it is used as described in this data sheet.

A copy of the Declaration of Conformity is available from the Apollo website: www.apollo-fire.co.uk

Conformity of the Orbis Marine Heat Detector with the EMC Directive, does not confer compliance with the directive on any apparatus or systems connected to them.

CONSTRUCTION PRODUCTS REGULATION 305/2011/EU

The Orbis Marine Heat Detector complies with the essential requirements of the Construction Products Regulation 305/2011/

A copy of the Declaration of Performance is available from the Apollo website: www.apollo-fire.co.uk

Orbis detectors; LED status

Feature	Description	Red LED status	Yellow LED status
StartUp™	Confirms that the detectors are wired in the correct polarity	Flashes once per second	No Flash
FasTest™	Maintenance procedure, takes just four seconds to functionally test and confirm detectors are functioning correctly	Flashes once per second	No flash
DirtAlert™	Shows that the drift compensation limit has been reached	No flash	Flashes once per second in StartUp (Stops flashing when StartUp finishes)
SensAlert™	Indicates that the sensor is not operating correctly	No flash	Flashes every four seconds (Flashes once per second in StartUp)
Normal operation	At the end of StartUp and FasTest (without flashing LED as standard)	No flash	No flash
Flashing LED version	Detectors red LED flashes in normal operation (at the end of FasTest)	Flashes every four seconds	No flash